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Stability of Kolmogorov scaling in anisotropically forced turbulence
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Renormalization-group analysis of randomly stirred fluid with anisotropic distribution of random force is
carried out at one-loop order. The axial anisotropy is introduced by free parameters of external forcing in the
Navier-Stokes equation, but the anisotropy parameters are not assumed to be small. The region of stability of
the Kolmogorov scaling regime in the space of anisotropy parameters has been determined for several space
dimensionalities 2,d<3. The Kolmogorov constant and the amplitudes of longitudinal and transverse pro-
jection operators with respect to the preferred direction in the energy spectrum have been calculated in
situations where the competition between the anisotropy of the external forcing and the Navier-Stokes dynam-
ics may affect the stability of the Kolmogorov regime. Extension to more complex magnetohydrodynamic
systems is under investigation.@S1063-651X~97!00501-1#

PACS number~s!: 47.27.2i, 52.65.Kj, 11.10.Hi
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I. INTRODUCTION

Nonlinearity of the Navier-Stokes equation for high Re
nolds numbers makes the theoretical description of de
oped turbulence very difficult. Since the 1970s there
been a significant growth of interest in the theoretical inv
tigation of statistical hydrodynamic models, where the p
nomenological statistics of an external random forcing h
been used for the modeling of very complex flow instab
ties. In the present paper the stochastic variant of the Nav
Stokes equation and the magnetohydrodynamic~MHD!
equations are discussed in the case when the axial symm
of external random forcing has been taken into account.

The deviation of the statistical behavior of the fully d
veloped turbulence from the isotropic statistics was c
firmed by a variety of experiments and computer simu
tions, and the role of spatially oriented fluctuations is
permanently discussed aspect of turbulence physics.

This deviation may be induced by the presence of spec
initial or boundary conditions, interactions of fluctuatin
fields with mean flow gradients, or external fields. In t
context of measurement the anisotropy contributions co
also be relevant for the experimental errors in determina
of the turbulent energy dissipation@1#. The comprehensive
paper of Herring@2# devoted to theoretical study of aniso
tropic splitting of kinetic energy spectra using direct intera
tion approximation could be considered the starting point
the development of this particular direction of research.

It is a widespread opinion that the local isotropy postul
of Kolmogorov together with the assumption that develop
turbulence in the inertial range is independent of the visc
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551063-651X/97/55~1!/381~14!/$10.00
l-
s
-
-
e

r-

try

-
-

c

ld
n

-
r

e
d
s

cutoff, shape, and size of boundary conditions, creates on
rough basis for the satisfactory understanding of the
complexity of the turbulence. Therefore the advanced sta
tical hydrodynamics tries to give a more accurate answe
the question of the validity of the classical phenomenolo
which ignores the effect of anisotropy inside the inertial su
scales. This question has been treated earlier@3,4# with the
assumption that the anisotropy in the stochastic forcing
small. In the present paper we have carried out a one-l
renormalization-group analysis of anisotropic stochastic
bulence without this assumption, and hope that our res
shed more light on the problem of validity of the classic
phenomenology.

Another important motivation of this work comes from
the study of weakly anisotropic stochastic magnetohydro
namics@5#. The results show that even small anisotropy
the forcing leads to a large-scale modification of viscous a
resistive behavior, viz., to the asymptotical growth of larg
scale Lorentzian terms. The dominant effective Lorentz
forces have been found to lead to the supression of the K
mogorov scaling. In the present work a new approach
proposed for the analysis of the stability of the critical r
gimes of the stochastic axisymmetric MHD.

II. RENORMALIZATION OF THE STOCHASTIC
NAVIER-STOKES EQUATION

Turbulent flow may be described by a random veloc
field vW (xW ,t) (vW andxW ared-dimensional vectors!, whose evo-
lution is governed by the randomly forced Navier-Stok
equation

] tvW 1 P̂~vW •¹W !vW 2n¹W 2vW 2 fWA5 fW , ¹W •vW 5¹W • fW50 ,
~2.1!
381 © 1997 The American Physical Society
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wheren is the kinematic viscosity andP̂ is the transverse
projection operator, defined asP̂5 Î2¹22¹W ^ ¹W ( Î is the
d3d unit matrix!. The explicit form of the anisotropic dis
sipative termfWA will be specified later. Following the tradi
tion of stochastic models of turbulence, the randomnes
Eq. ~2.1! is introduced by the large-scale random forci
fW(xW ,t) with Gaussian statistics defined by the averages

^ f j&50 , ^ f j~xW1 ,t1! f s~xW2 ,t2!&5Djs~xW12xW2 ,t12t2!.

Here, the two-point correlation matrix

Djs~xW ,t !5d~ t !E ddkW

~2p!d
D̃js~kW !exp@ i kW•xW # ~2.2!

can be parametrized@3,5# as

D̃js~kW !5gvn
3L2ek42d22e$@11a1jk

2#Pjs~kW !1a2Rjs~kW !%
~2.3!

for d-dimensional anisotropic random force. The matric
P and R of transverse projection operators in the wav
number space are defined by the relations

Pjs~kW !5d js2
kjks
k2

,

Rjs~kW !5S nj2jk
kj
k D S ns2jk

ks
k D ,

jk5
kW•nW

k
. ~2.4!

In the expressions~2.3! and~2.4! kW denotes the wave vecto
and the unit vectornW yields the direction of the anisotrop
axis. In the definition~2.3! the most general parametrizatio
of the nonhelicalDjs tensor, which depends on the dime
sionless free parametersa1 anda2 maintaining the property
of incompressibility, is used. The force correlation tens
Djs must be positive definite, which leads to the followin
restrictions to the values of the parametersa1>21,
a2>0. For nonzeroa1, a2 the forcing describes difference
in energy injection in the preferred direction and directio
perpendicular to it with the subsequent generation of an
tropic structures in the large-scale eddies. Irrespective of
precise details of large-scale dynamics a successive is
pization of these structures towards the small scales ca
expected. We emphasize that, in contrast with the prev
work @3,4#, these parameters are not considered small in
present analysis. The parameterL with the wave-number
dimension is a scale setting parameter characterizing the
of the microeddy region, andgv is a positive dimensionles
constant. The usual assumption of stochastic theories ex
iting the Kolmogorov scaling behavior is that the forcing
localized near the origin in the wave-vector space, there
the physical value of the parametere is e52.

Measurable quantities in the analysis of the develo
turbulence are the correlation functions of velocity, whi
may be calculated by means of the functional integral
in
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K )
j51

N

vmj
~xW j ,t j !L 5E @ddvW #@ddṽW #P~vW ,vW̃ !

3)
j51

N

vmj
~xW j ,t j !, 1<mj<d.

~2.5!

Following @7#, we write the probability distribution of the
velocity fieldvW in the formP5norm3exp@S# with the action

S5E ddxW1dt1d
dxW2dt2

3F12ṽ j~xW1 ,t1!Djs~xW12xW2 ,t12t2!ṽs~xW2 ,t2!G
1E ddxWdt$vW̃ ~xW ,t !@2] tvW 2~vW •¹W !vW

1n¹W 2vW 1 fWA#~xW ,t !%. ~2.6!

Note that a new independent of thevW auxiliary incompress-

ible field vW̃ has been introduced in the transformation of t
stochastic problem~2.1!–~2.4! into the functional form. By
means of the renormalization-group method it is possible
extract large-scale asymptotics of the correlation functio
To this end, the field theory~2.6! must first be renormalized
which is most conveniently carried out by multiplicativ
renormalization@6#.

In order to obtain a multiplicatively renormalizable theo
@7# it is necessary to include in the action terms correspo
ing to all superficially divergent one-particle irreducible co

relation functions of both fieldsvW̃ andvW . The analysis of the
divergences of the correlation functions shows that to hav
multiplicatively renormalizable theory, we must take the a
isotropic dissipative term in the Navier-Stokes equation~2.1!
in the form

fWA5n@x1~nW •¹W !2vW 1x2P̂nW ¹W 2~nW •vW !

1x3P̂nW ~nW •¹W !2~nW •vW !#. ~2.7!

Here,x1 ,x2, andx3 are dimensionless parameters descr
ing the relative impact of the different anisotropic structur
on the viscous dissipation. Technically, these new para
eters are required to bring about the cancellation of the
vergences in the diagrammatic expression of the correla
functions ~2.5!. Physically, the expression~2.7! for the an-
isotropic force term in the Navier-Stokes equation~2.1! may
be obtained on phenomenological grounds in the same f
ion as the viscous terms in the isotropic Navier-Stokes eq
tion, where they are presented as the divergence of the
cous stress tensor@8#. Constructing the most genera
expression of the phenomenological viscous stress tens
the presence of a preferred direction and taking its div
gence we arrive at the expression~2.7! for the anisotropic
solenoidal part of the dissipative term of the Navier-Stok
equation. The coefficientsx i are the dimensionless coeffi
cients of viscosity of the anisotropic part of the viscous str
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55 383STABILITY OF KOLMOGOROV SCALING IN . . .
tensor, and represent the orientational redistribution of
momentum flux accompanied by energy dissipation.

In the leading order in the expansion parametergv the
contributions to the renormalization of the stochastic Nav
Stokes equation~2.1! with the anisotropic forcefWA in the
form ~2.7! are extracted, according to the standard rules
the minimal subtraction method@9#, from the one-loop irre-
ducible Feynman diagram, whose analytic expression is

Gab
~2!~kW !5E ddpW

~2p!d
E

2`

`

dtDab~pW ,t !D̃gd~kW2pW ,t !

3Vaag~kW !Vdbb~kW2pW !. ~2.8!

These terms are singular in the limite→0 with the tensor
structures

O~k2dab /e!, O„~kW•nW !2dab /e…,

O~k2nanb /e!, O„~kW•nW !2nanb /e….

The elements of the perturbation expansion appearing in
integral ~2.8! are obtained from the quadratic part and t

cubic termvW̃vWvW of the action~2.6!. In the (kW ,t) representa-
tion the propagatorsD̃, D, and the symmetrized vertexV
may be written in the form

Dab~kW ,t !5
gv
2

n2L2ek22d22e$w1~jk ,tk!Pab~kW !

1w2~jk ,tk!Rab~kW !%,

D̃ab~kW ,t !5u~ t !$w3~jk ,tk!Pab~kW !1w4~jk ,tk!Rab~kW !%,

Vabg~kW !5 i $Pab~kW !kg1Pag~kW !kb%, ~2.9!

where

w15
11a1j

2

A
e2utuA, t5nk2t,

w25
1

A Fa2e
2utuA1@11a11~a22a1!~12j2!#

3
1

B~12j2!
~Ae2utuB2Be2utuA!G ,

w35e2tA, w452
1

12j2
~e2tB2e2tA!,

A511x1j
2, M5x21x3j

2, B5A1~12j2!M .
~2.10!

In a multiplicatively renormalizable model the renormaliz
tion leads to multiplication of the parameters of the model
renormalization constantsZ. The correlation functions of the
renormalized model are calculated with the use of the ren
malized action, which in the present model is of the form
e

-

f

he

y

r-

SR5E ddxW1dt1d
dxW2dt2

3F12ṽ j~xW1 ,t1!Djs~xW12xW2 ,t12t2!ṽs~xW2 ,t2!G
1E ddxWdt„vW̃ ~xW ,t !$2] tvW 2~vW •¹W !vW

1n@Z1¹W
2vW 1Z2x1~nW •¹W !2vW 1Z3x2nW ¹W 2~nW •vW !

1Z4x3nW ~nW •¹W !2~nW •vW !#%…. ~2.11!

The renormalization constantsZj (Zj;1/e at the leading or-
der of the expansion ingv) may be constructed in such a wa
that they give rise to terms which cancel the divergen
appearing in the integrals of the model~2.11!. It should be
noted that renormalization gives rise to the renormalized
tion ~2.11! for space dimensionsd.2 only. At two dimen-
sions new divergences appear, which lead to the renorm

ization of the term quadratic in the auxiliary fieldvW̃ . This
results in additional complications in the renormalizatio
group analysis of the model near two dimensions@10#, there-
fore we restrict the present treatment to space dimens
d.2.

In the leading order the renormalization constants are
tracted from the divergent part of the integral~2.8! according
to the following prescription:

Gab
~2!~kW !52nk2dab~12Z1!2n~kW•nW !2dab~12Z2!

2nk2nanb~12Z3!2n~kW•nW !2nanb~12Z4!

1regular terms. ~2.12!

Rather complicated explicit expressions for the renormali
tion constants can be found in Appendix A.

III. STABILITY OF ANISOTROPIC
HYDRODYNAMIC THEORY

In the renormalization-group method the correlation fun
tions ~2.5! are expressed in terms of scaling functions co
taining effective variablesḡ(s)[(ḡv ,x̄1 ,x̄2 ,x̄3) which are
functions of the rescaled wave numbers5k/L. The depen-
dence on the scale of these effective variables is governe
the system of differential equations@11#

s
dḡv
ds

5bgv
~ ḡ;a1 ,a2 ,d!,

s
dx̄ j

ds
5bx j

~ ḡ;a1 ,a2 ,d!, 0<s<1 ~3.1!

with the initial conditions

ḡu~s51!5g[~gv ,x1 ,x2 ,x3!. ~3.2!

The large-scale limit of the statistical theory is described
the stable fixed points of the renormalization group det
mined by



g
ns

n
ve

384 55J. BUŠA, M. HNATICH, J. HONKONEN, AND D. HORVATH
FIG. 1. Borderlines in the (a1 ,a2) plane of
the region of stability of the Kolmogorov scalin
regime are shown for several space dimensio
2,d<3. Despite the physical conditiona2.0,
to obtain a complete survey of the stability regio
we have included also the region of negati
a2.
d
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ḡ~s→0!5g* , bgv
~g* ;a1 ,a2 ,d!50 ,

bx j
~g* ;a1 ,a2 ,d!50 . ~3.3!

At the one-loop order of the minimal subtraction scheme@9#
theb functions on the right-hand side of Eqs.~3.1! may be
expressed in terms of the renormalization constants as

bgv
52gve~123Z1!,

bx j
52 x je~Zj112Z1!, j51,2,3.

The explicit form of the complicatedbg andbx j
functions

obtained from one-loop diagrams is presented in Appen
A.

The location and stability of the fixed points in theg
space depend on the parametersd, a1, anda2. The expres-
sions for theb functions contain integrals, which have to b
calculated numerically. Therefore only a numerical analy
~see Appendix B! of the renormalization-group flows~3.1!
may be used to clarify different aspects of the strong ani
ropy problem. The set of flow patterns determined by
initial conditions ~3.2! leading to a stable fixed point~3.3!
constitute the universality class of this fixed point.

Numerical investigation illustrated in Figs. 1–9 confirm
the existence of a universal kinetic scaling regime cor
sponding to a stable fixed point of the renormalization gro
for not too large values of the anisotropy parametersa1 and
a2. The Kolmogorov spectral index of this fixed point r
mains fixed to a value independent ofd ~see Sec. IV!. How-
ever, for large physically allowed values of the anisotro
ix

is

t-
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y

parameters the Kolmogorov scaling regime becomes un-
stable, with a region of stability shrinking when the dimen-
sion of space is decreased.

Various aspects of axisymmetrically driven turbulence

FIG. 2. Contour map of the fixed point values of the coupling
constantgv* (a1 ,a2) at d53. The borderline of the stability region
of the Kolmogorov scaling regime is also shown. Note the weak
dependence ofgv* on the parametera2 in the stability region.
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FIG. 3. Contour maps of the fixed point values of the parametersx1* , x2* , andx3* of the effective viscosity tensor.~a! Contour map of
the fixed point values ofx1* . Note the nearly linear behavior of the equal-value contours ofx1* in the stability region.~b! Contour map of
the fixed point values ofx2* . ~c! Contour map of the fixed point values ofx3* . Note that the strongly curved equal-value contours ofx3* in
the stability region are qualitatively different from the straight-line contours of the parametersgv* , x1* , andx2* .
tio
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t
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were discussed earlier in the weak-anisotropy approxima
@3,4#. In the present work we analyze stability of the Ko
mogorov scaling against strong anisotropy and calculate
dependence of the Kolmogorov constant on the anisotr
parameters. It is a key step of this formulation to assess
relevance of the termx3nnW (nW •¹W )

2(nW •vW ) in the effective an-
isotropic viscosity tensor, which is absent in the wea
anisotropy approximation of Rubinstein and Barton@3#. Ac-
n

e
y
he

-

cording to our investigation of Eq.~2.1! in the weak-
anisotropy limit, the presence of nonzerox3 parameter is
irrelevant for the stability of the theory atd53, see Fig. 1, or
eventually see the relations~4.15!.

The turbulence is expected to be a universal phenome
However, the notion of universality must be clarified he
because all of the obtained fixed point values of the para
eters g depend on the anisotropy parametersa1 and a2.
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Therefore the plausible notion of universality can be full
related only to such characteristics, which remain un
changed, if the external axial symmetry lowers the symmet
of the turbulent system. In the case of the kinetic regime, a

FIG. 4. Contour map of the Kolmogorov constantCk(a1 ,a2).
Note that maximal changes ofCk caused by the anisotropy are of
the order ofO(1023).

FIG. 5. Contour map of the function 1023s i ,'(a1 ,a2), which
characterizes relative difference of the longitudinal and transver
effective Kolmogorov constants.
-
y
n

example of such a persistent variable is the spectral inde
@n#52e/3, which determines the large-scale asymptotics o
turbulent viscosity.

Henceforth, we restrict ourselves to the presentation o
the main results of the renormalization-group analysis, whic
are focused on the investigation of the Kolmogorov scalin
regime with an emphasis on thed-dimensional approach
(2,d<3).

Calculations on the strongly anisotropic system hav
shown that qualitative changes in anisotropically driven tur
bulence can take place at dimensions between two and thr
For each fixed value of the dimension of spaced there is a
region in the (a1,a2) plane, in which the Kolmogorov scal-
ing regime is stable against anisotropic forcing in the sens
that there is an infrared-stable fixed point of the renormaliza
tion group with the Kolmogorov spectral index independen
of d and the anisotropy parametersa1 anda2. Outside the
stability region this fixed point is not infrared stable—
numerical analysis indicates that the system approaches
strong-coupling regime there—and the Kolmogorov scalin
regime does not exist. The borderline of the region of stabi
ity is shown in Fig. 1 for several values of the space dimen
sionality. It should be noted that at three dimensions aniso
tropic forcing destabilizes the Kolmogorov regime at rathe
small values ofa2.0.0235. Figure 1 also illustrates the fact
that the Kolmogorov regime becomes unstable against an
anisotropy below a critical dimension@4#

dc5
3A1727

2
.2.6846, ~3.4!

because the region of stability vanishes for physically al
se

FIG. 6. Contour map of the function 1033s isotr(a1 ,a2), which
characterizes relative difference of the effective Kolmogorov con
stant of the anisotropic model and the Kolmogorov constant of th
isotropic model.
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FIG. 7. Distribution of fixed point values of parameters calculated for a regular square mesh in the parametric space ofa1, a2 . The
calculation has been carried out only for stable fixed parameters. Data projections of obtained vectors@a1 ,a2, gv* (a1 ,a2), x1* (a1 ,a2),
x2* (a1 ,a2), x3* (a1 ,a2)] onto two-dimensional subspace of the parameters (x1* ,x2* ) are shown in~a!, onto subspace of the paramete
(x1* ,x3* ) in ~b!, onto subspace of the parameters (x2* ,x3* ) in ~c!, onto subspace of the parameters (gv* ,x1* ) in ~d!, onto subspace of the
parameters (gv* ,x2* ) in ~e!, and onto subspace of the parameters (gv* ,x3* ) in ~f!.
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lowed values of the anisotropy parametersa1>21, a2>0.
Figure 1 also shows that the region of stability of the Ko
mogorov scaling regime in the parametric space ofa1, a2
decreases with the dimension of space.

IV. EFFECTIVE KOLMOGOROV CONSTANT

The basic parameter characterizing the inertial range
ergy cascade is the Kolmogorov constantCk . Here we dis-
cuss the anisotropic theory, where the effectiveCk is not
constant, but depends on the anisotropy parametersa1 and
a2 @or g* through Eq. ~3.1!#. The calculation of
Ck(a1 ,a2) is carried out following the main steps of the
isotropic theory@12#. However, it is not possible to obtain
analytic results here, and the dependence ona1 anda2 of the

FIG. 8. Plot of the effective transverse Kolmogorov consta
C' as a function ofa1 for different values ofa2 .

FIG. 9. Plot of the effective longitudinal Kolmogorov constan
Ci as a function ofa1 for different values ofa2.
n-

amplitudes of the longitudinal and transverse projection
erators in the radial energy spectrum has been investig
numerically.

Taking into account the stationarity and translational
variance of the model, the correlation functions can be
pressed in terms of relative coordinates. This implies that
equal-time velocity pair correlation function is given by

^v j~xW1 ,t !vm~xW2 ,t !&5E ddkW

~2p!d
Gjm
R ~kW !exp@ ikW•~xW12xW2!#.

Here, the spatial Fourier transformGjm
R (kW ) as a function of

renormalized variables

Gjm
R ~kW !5

1

2
n2L2ek222e2dU jm„ḡ~s!…C~s!, ~4.1!

with

C~s!5s2eexpF22E
1

sds̃

s̃
g1„ḡ~ s̃!…G , g15

] lnZ1
] lnL

~4.2!

satisfies the renormalization-group equation

FL
]

]L
1bgv

]

]gv
1(

j51

3

bx j

]

]x j
2g1n

]

]nGGjm
R ~kW !50 .

The leading-order approximation of the functionUjm can be
derived from the condition that at the lowest order of pert
bative expansion the correlation functionGR must coincide
with the propagatorD jm(kW ,t50) of Eq. ~2.9!, therefore

Ujm„ḡ~s!…' ḡ v~s!P jm

[ḡv~s!@Pjm~kW !w1~jk,0!

1Rjm~kW !w2~jk,0!#x j→x̄j ~s! .

Using the differential equation~3.1! for the variableḡv(s) it
can be shown that

E
1

sds̃

s̃
g1„ḡ~ s̃!…5

1

3
lnS ḡv~s!

gv
D1

2e

3
lns. ~4.3!

Thus from Eqs.~4.2! and ~4.3! it follows that

C~s!5s2e/3S gv

ḡv~s!
D 2/3. ~4.4!

Substitution of Eq.~4.4! into Eq. ~4.1! yields the expression

Gjm
R ~kW !5

1

2
n2@gv#

2/3@ ḡv~s!#1/3k22d24e/3L4e/3P jm„ḡ~s!….

~4.5!

The perturbatively exactly calculated universal large-sc
asymptoticsk22d24e/3 in Eq. ~4.5! can be considered th
main result of the renormalization-group analysis.

t
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55 389STABILITY OF KOLMOGOROV SCALING IN . . .
Next we establish a relation between the mean dissipa
rate of energy«̄ and the parametersgv andn. Comparing the
Schwinger equation̂dS/d ṽ j&50 with Eq. ~2.1! yields the
relation

f j~xW ,t !5
1

2E ddxW1E dt1ṽ l~xW1 ,t1!@Djl ~xW2xW1 ,t2t1!

1Dl j ~xW12xW ,t12t !#, ~4.6!

which couples the auxiliary fieldvW̃ and the random force
field fW by means of the correlation matrix of the rando
force Djl . Using Eqs.~2.2! and ~4.6! and the symmetry
propertyDjl5Dl j , we obtain the correlation function

^ fW~xW ,t !•vW ~xW ,t !&5E ddxW1E ddkW

~2p!d
D̃j l ~kW !cos@kW•~xW2xW1! #

3^v j~xW ,t !ṽ l~xW1 ,t !&. ~4.7!

To derive an analytic formula for the correlation functio

^ fW•vW &, we employ the connection~4.7! and the exact form of
the equal-time response function^v j ṽa&. Each term of the
perturbative expansion of the response funct

^v j (xW ,t) ṽa(xW1 ,t)& contains continuous chains of retard
D̃(k,t) propagators. In the equal-time response function
step functionsu(t) in D̃(k,t) form closed loops which pro
duce vanishing time integrals, apart from the case of a sin
D̃(k,t) propagator@7#. The resulting expression

^v j~xW ,t !ṽa~xW1 ,t !&5E ddkW

~2p!d
D̃a j~kW ,0!exp@ ikW•~xW2xW1!#

contains only the remaining zeroth-order contribution. Us
Eq. ~2.9! we obtain

^v j~xW ,t !ṽa~xW1 ,t !&5
1

2E ddkW

~2p!d
Pa j~kW !exp@ ikW•~xW2xW1!#,

~4.8!

where the conventionu(0)51/2 has been used.
When Eq.~4.8! is combined with Eq.~4.7! the correlation

function of random force and velocity field acquires the fo

^ fW~xW ,t !•vW ~xW ,t !&5
1

2Ek<L

ddkW

~2p!d
D̃j j ~kW !, ~4.9!

where we have introduced the cutoff parameterL explicitly.
Averaging the scalar product of Eq.~2.1! andvW , and taking
into account that the terms] t^vW •vW &, ^vW •@(vW •¹W )vW #& vanish
due to stationarity and translational invariance we arrive
the energy balance condition

«̄[^ fWA~xW ,t !•vW ~xW ,t !&5^ fW~xW ,t !•vW ~xW ,t !&, ~4.10!

where «̄ is the mean rate of energy dissipation. From E
~4.9! and ~4.10! we have

«̄5
1

2Ek<L

ddkW

~2p!d
D̃j j ~kW !.
n

n

e

le

g

t

.

With the help of Eq.~2.3! and subsequent analytical integr
tion the following explicit form of the mean rate of energ
dissipation is derived:

«̄5gvn
3
Sd~d21!

2~2p!d
L4

422e S 11
a11a2

d D , Sd5
2pd/2

G~d/2!
,

~4.11!

whereG(x) is the gamma function. Using Eq.~4.11! we can
express n2 as a function of the produc
«̄2/3gv

22/3L28/3(422e)2/3 and substitute it in Eq.~4.5!. In the
large-scale limit we obtain

Gjm
R~* !~kW !5 «̄2/3c̃ak

22d24e/3L~4/3!~e22!S 12
e

2D
2/3

3~2gv* !1/3P jm~g* !, ~4.12!

with

c̃a5S 2~2p!dd

Sd~d21!~d1a11a2!
D 2/3,

where the notationGjm
R(* )(kW ) means thatGR and the func-

tions ~2.10! are taken at the fixed point corresponding to t
Kolmogorov scaling regime. In the framework of th
e-expansion method the coefficient of the powerlike wav
number dependence of the velocity correlation function
calculated up to theO(e1/3) order, and the Kolmogorov val
ues of the exponents 4(e22)/3 and 22d24e/3 can be ob-
tained by choosing for the expansion parameter the va
e52. Thus we obtain from Eq.~4.12! the expression

Gjm
R~* !~kW !52/3cak

22/32dP jm~g* !, ca5~2gv* !1/3c̃a .

In order to better understand the possible measurable co
quences of the presence of anisotropy, we define the ra
spectral tensor as

Ejm~k!5
1

2~2p!d
kd21E dVkWGjm

R~* !~kW !. ~4.13!

Here, dVkW denotes the measure of integration over t
spherical surface of radiusukW u centered atkW50W .

Instead of the Kolmogorov constantCk of isotropic tur-
bulence, we introduce two independent scalar amplitu
Ci andC' , which decomposeEjm to longitudinal and trans-
verse parts with respect to the preferred direction,

Ejm~k!5
1

d
@C'Pjm~nW !1CiPjm

i ~nW !#«̄2/3k25/3. ~4.14!

Using the expressions~4.13! and ~4.14! with the subsequen
extraction of the projection operators we obtain

Ci5cbE
0

1

dj~12j2!~d21!/2@w1* ~j,0!1~12j2!w2* ~j,0!#,

C'5
cb
d21E0

1

dj~12j2!~d23!/2

3@~d221j2!w1* ~j,0!1j2~12j2!w2* ~j,0!#,
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cb5caSd21d/~2p!d.

Substituting Eq.~2.10! in the preceding expressions we o
tain

Ci5cbE
0

1

dj~12j2!~d21!/2K~j!,

C'5cbE
0

1

dj~12j2!~d23!/2S ~d22!
11a1j

2

11x1* j2
1j2K~j! D ,

with the function

K~j!5
11a21~a12a2!j

2

11x2*1~x1*2x2*1x3* !j22x3* j4
.

Comparison of the trace of the matrix~4.14! with the defini-
tion of the isotropic Kolmogorov constant

Ej j ~k!5Ck«̄
2/3k25/3

yields

Ck5
~d21!C'1Ci

d
.

The Kolmogorov constantCk and the parametersC' and
Ci may be determined using the fixed point parameters of
renormalization group calculated numerically.

We define the relative measuress i ,' ands isotr character-
izing deviation of the system from the isotropic state as

s i ,'5
Ci2C'

Ck
, s isotr5

Ck2Ck
isotr

Ck
isotr ,

whereCk
isotr is the Kolmogorov constant in the isotropic st

chastic model@12#.
Let us consider the most important cased53, which is

well illustrated in Figs. 2–9. Ford53 the Kolmogorov con-
stant of isotropic systemCk

isotr5(80/3)1/3.2.9876@12#. Ana-
lyzing available data we have found that the values of
parametersa1, a2 fall into the region of stability of Kolmog-
orov scaling if they satisfy the inequalities

0,a2,0.017 6820.029 12a1

20.023 85a1
210.032 84a1

3 ,

20.906,a1,0.546. ~4.15!

We have also found that in the stability region the anisotro
measuress i ,', s isotr are subject to the following limitations
~Figs. 5–6!:

21.731022,s i ,',5.0431022,

26.231023,s isotr,2.431023.

For the numerical values ofCk and related parameters w
find ~Figs. 4–6, 8, and 9! that

2.97

,Ck,2.995, 2.951,Ci,3.082, 2.925,C',3.003.
e

e

y

It turns out that the effect of induced anisotropy is hard
visible in the calculated value of the parameterCk . How-
ever, our predictions of the variations ofs i ,' and spectral
‘‘splitting’’ shown in Figs. 8 and 9, which are of the order o
about a few percent allow us to speculate about experime
verification of these results. The analysis has revealed
the radial energy spectrum including the information ab
the statistics of velocity modes is not sensitive to the pr
ence of anisotropy. It can be seen from Figs. 7~a!–7~f! that
the effect of anisotropy is more pronounced in the variatio
of the fixed point values of the parameters

20.11,x1*,0.1, 20.04,x2*,0.31, 20.72,x3*,0 ,

which describe the effective anisotropic viscosity.

V. ANISOTROPIC RESISTIVE
AND LORENTZIAN FORCES

IN STOCHASTIC MAGNETOHYDRODYNAMICS

There are several mechanisms through which the M
turbulent media become anisotropic. The anisotropy
arise in the presence of a uniform background magnetic fi
@13#, macroscopic polarization of the turbulent media, or a
isotropy induced by specific random forcing@5#. The last
example deals with the problem of how the anisotropic fo
ing determines the inertial properties of the MHD.

The initial object of our treatment—stochastic anisotrop
hydrodynamics—is used to construct a renormaliza
theory of randomly driven anisotropic magnetohydrodyna
ics. The equations of the anisotropically driven MHD flu
@5# ~under the conditions of very high Reynolds numbers a
magnetic Reynolds numbers! may be written as

] tvW 1 P̂@~vW •¹W !vW 1~bW •¹W !bW #2n¹W 2vW 2 fWA1 fWL5 fW ,

] tbW 1~vW •¹W !bW 2~bW •¹W !vW 2un¹W 2bW 2 fWB5 fWb,

¹W •vW 5¹W •bW 5¹W • fW5¹W • fWb50 ,

whereu is the dimensionless inverse magnetic Prandtl nu
ber. The correlations of the magnetic forcing satisfy t
usual assumption of uncorrelatedfWb and fW forces. The statis-
tics of the magnetic random force is assumed to be Gaus
with the correlation functions@5#

^ f j
b~xW1 ,t1! f s~xW2 ,t2!&50 ,

^ f j
b~xW1 ,t1! f s

b~xW2 ,t2!&5Djs
b ~xW12xW2 ,t12t2!.

The correlation functionDjs
b is defined by the relations~2.2!

and ~2.3! and the following reparametrizationgv→gb ,
a1→a3, a2→a4, e→e8. Here,a3 , a4, and the exponen
e8 are additional free parameters andgb is a new coupling
parameter. The anisotropy of the magnetic forcing requ
appropriate additional terms with lower symmetry to
added to the model, which are absent in the standard M
equations. The anisotropic magnetodissipative term an
gous to~2.7! is

fWB5un@x4~nW •¹W !2bW 1x5P̂nW ¹W 2~nW •bW !1x6P̂nW ~nW •¹W !2~nW •bW !#,
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where x j , j54,5,6 are new dimensionless parameters.
the terms, which are generated in the process of renorma
tion, must be included in the definition of the modifie
Lorentzian force in order to obtain a multiplicatively reno
malizable model. The additional terms can be written in
form

fWL5 P̂@l1bW ~nW •¹W !~nW •bW !1l2nW ~nW •¹W !b21l3nW ~bW •¹W !~nW •bW !

1l4nW ~nW •bW !~nW •¹W !~nW •bW !#

regarded as a modification of the isotropic Lorentzian te

@bW •¹W #bW .
Recently, a renormalizable variant of the MHD theo

with simpler termsfWl4→0
L , fWAux3→0, fWBux6→0 has been stud

ied in detail@5#. This treatment was limited by the assum
tion that the anisotropy parametersa l ,l51,2,3,4 and conse
quently the fixed point valuesx j* , j51,2,4,5;l i* ,i51,2,3
were small. It was shown that the investigation of MHD
the weak anisotropy limit leads to Kolmogorov’s spect
prediction~for the kinetic and the magnetic energy spectra! if
the forcing exponents satisfy the physically unacceptable
equality e8,0.65e. The results obtained in the hydrody
namic theory with strong anisotropy allow us to specul
about the consequences for the stability of the MHD.

We believe that the presence of thex6 magnetodissipative
term, analogous to the previously discussed viscousx3 term,
will have immediate implications for the large-scale effect
the anisotropicfWL term and therefore will play an importan
role in the stabilization~eventually destabilization! of the
critical regimes in the MHD.

VI. CONCLUSION

In this paper a renormalization-group analysis of ani
tropically driven hydrodynamic turbulence has been carr
out at the leading nontrivial one-loop order of the perturb
tion theory. The problem of the existence and stability of
Kolmogorov scaling regime has been investigated thro
numerical solution of the equations for the fixed point of t
renormalization group. The principal conclusion from the
sults is that the Kolmogorov scaling regime can become
stable due to relatively small anisotropy variations; the l
the space dimensionality, the more pronounced this prop
becomes. In particular, it has been confirmed that there
critical dimensiondc5(3A1727)/2.2.6846, below which
the Kolmogorov scaling regime does not exist in the pr
ence of anisotropic forcing. For the parameters describ
ll
a-

e

l

n-

e

f

-
d
-
e
h

-
-
s
ty
a

-
g

the anisotropy limits have been established in which th
give rise to the Kolmogorov scaling regime, for spatial d
mensionsdc<d<3. Relevance of a previously neglecte
term of the effective anisotropic viscous force has been
cussed. An anisotropically driven MHD theory with simila
strong-anisotropy terms has been put forward.
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APPENDIX A: CALCULATION OF b FUNCTIONS

In order to reduce as much as possible the numbe
terms arising from the integral~2.8! in the various computa-
tional stages, a few auxiliary identities and relations ha
been established. It is necessary to specify the form in wh
the functionsw3(jk2p ,tk2p), w4(jk2p ,tk2p) and also the
operatorsP(kW2pW ) and R(kW2 pW ) will be expanded in the
Taylor series in powers ofkW @external wave vector of the
integral~2.8!#. The proportionalityVaag(kW );k is the reason,
why in the final extraction of quadratic terms from~2.8! the
Taylor expansion of the productD̃gd(kW2pW ,t)Vdbb(kW2pW ) is
needed up to the first-order inkW only. Let us define the co-
efficientsW( j ,i ) , i50,1,2,3 ~they depend on the scalar pa
rameterjp) as the first-order derivatives at vanishing sca
productskW•nW andkW•pW ,

W~ j ,0!5wj u~kW•nW ;kW•pW→0! ,

W~ j ,1!5p
]wj

]~kW•nW !
u~kW•nW ;kW•pW→0! ,

W~ j ,2!5p2
]wj

]~kW•pW !
u~kW•nW ;kW•pW→0! .

Then the expansion ofw3 ,w4 is

wj5W~ j ,0!1W~ j ,1!S kW•nWp D 1W~ j ,2!S kW•pWp2 D ~A1!

for j53, 4. Using the relations~2.9! we obtain the coeffi-
cients
W~3,1!52W~3,0!tjx1 , W~3,2!52t~A2j2x1!e
2At,

W~4,1!5
2e2At2Bt

~A2B!2
~2B8eAtMj1B8eBtMj1AB8eAtMtj2BB8eAtMtj1eAtMjx12eBtMjx1

2AeBtMtjx11BeBtMtjx12AeAtjx31BeAtjx31AeBtjx32BeBtjx3!,

W~4,2!5
2e2At2Bt

~A2B!2
~ABeAtMt2B2eAtMt2A2eBtMt1ABeBtMt1B8eAtMj22B8eBtMj22AB8eAtMtj2
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1BB8eAtMtj22eAtMj2x11eBtMj2x11AeBtMtj2x12BeBtMtj2x11AeAtj2x32BeAtj2x32AeBtj2x3

1BeBtj2x3!,

where

B85
]B

]j2
5x12x21x3~ 12j2!.

For the operatorsP andR as functions of the wave vectorkW2pW we find the expansion rules

Pjs~kW2pW !5Pjs~pW !22 p24~kW•pW !pjps1p22~kspj1kjps!,

Rjs~kW2pW !5Rjs~pW !1~nj2p21jppj !@p
21jpks1p22kjkps22p23jp~kW•pW !ps#

1~ns2p21jpps!@p
21jpkj1p22kjkpj22p23jp~kW•pW !pj #.

In the following we present a procedure which considerably reduces the computational effort and replaces the int
with the measureddpW by single integral over the variablej. The final step of the procedure—the one-dimensional integra
overj—must be realized numerically. Let us denote byF( ) an arbitrary function of the argumentpW •nW /p. The following rules
for the extraction of the 1/e poles in the minimal subtraction procedure@9#:

E ddpW

~2p!d
F~jp!

pipjpspm
p41d12e 5

1

2e
@ I ~4,1!$F%ninjnsnm1I ~4,2!$F%~ninjdsm1ninsd jm1ninmd js1njnsd im1njnmd is1nsnmd i j !

1I ~4,3!$F%~d i jdsm1d isd jm1d imds j!#,

E ddpW

~2p!d
F~jp!

pipjps
p31d12e 5

1

2e
@ I ~3,1!$F%ninjns1I ~3,2!$F%~nid js1njd is1nsd i j !#,

E ddpW

~2p!d
F~jp!

pipj
p21d12e 5

1

2e
@ I ~2,1!$F%ninj1I ~2,2!$F%d i j #,

E ddpW

~2p!d
F~jp!

pi
p11d12e 5

1

2e
ni I ~1,1!$F%, E ddpW

~2p!d
F~jp!

1

pd12e 5
1

2e
I 0$F%

are appropriate for the separation of the divergent part from the one-loop Feynman integral~2.8!. Here,I (X,Y)$F% are linear in
F functionals connected with the basic functional

I 0$F%[I ~0,0!$F%5
Sd21

~2p!d
E

21

1

dj~12j2!~d23!/2F~j! ~A2!

by means of the relations

I ~4,1!$F%5~d4d2I 0$Fj4%26d2I 0$Fj2%13I 0$F%!~d221!21, I ~4,2!$F%5~2d2I 0$Fj4%1d3I 0$Fj2%2I 0$F%!~d221!21,

I ~4,3!$F%5~ I 0$Fj4%22I 0$Fj2%1I 0$Fj2%!~d221!21, I ~3,1!$F%5~ I 0$Fj3%d223I 0$Fj%!~d21!21,

I ~3,2!$F%5~2I 0$Fj3%1I 0$Fj%!~d21!21, I ~2,1!$F%5~ I 0$Fj2%d2I 0$F%!~d21!21,

I ~2,2!$F%5~ I 0$F%2I 0$Fj2%!~d21!21, I ~1,1!$F%5I 0$Fj%,

where we have used the notation

dj5d1 j , j52,3,4.

In order to keep the number of terms in the renormalization constantsZj of the renormalized action~2.10! as small as possible
it is useful to define the followingJa1a2b1b2c1c2 tensor structure:

Ja1a2b1b2c1c25
gv
4e

I ~a1 ,a2!H jb1E
2`

`

dtwb2
~j,t!W~c1 ,c2!~j,t!J . ~A3!
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The expressions~A1! and ~A3! may be used to bring the coefficientsZ1 , . . . ,Z4 into the compact form

Z12152J2221402J2222401J22424022J4301302J43013214J4321401J43214212J4322301J43223212J4322401J432242

24J4342402J434242,

Z22152J2211412J2212312J22124122J2222401J2232412J32013123J3211402J32114222J3212302J3212322J321240

2J3212421J3221411J3222311J32224115J3232401J3232422J32424122J4201302J42013214J4221401J422142

12J4222301J42223212J4222401J42224224J4242402J424242,

Z3215J1121401J1122402J1142402J2121402J2122401J2142402J22224023J3211402J32114222J3212302J321232

22J3212402J32124215J3232401J32324222J4201302J42013214J4221401J42214212J4222301J42223212J422240

1J42224224J4242402J424242,

Z42152J0002401J1111411J1112311J11124115J1122402J11324112J2101401J21014212J2102301J2102321J210240

1J21024222J21114122J21123122J211241210J2122402J21224212J2132412J31013126J31114022J311142

24J31123022J31123223J31124022J3112421J3121411J3122311J312241110J31324012J3132422J31424122J410130

2J41013214J4121401J41214212J4122301J41223212J4122401J41224224J4142402J414242.
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APPENDIX B: NUMERICAL METHODS USED
IN THE SOLUTION OF DIFFERENTIAL EQUATIONS

OF THE RENORMALIZATION GROUP

The system of differential equations~3.1! was solved nu-
merically, using the fourth-order Runge-Kutta method w
the adaptive choice of the integration step. For the varia
z52 lns the first step valueDz50.001 was chosen. The ste
Dz was considered satisfactory, if the relative error of tw
consequent approximations did not exceed 1025. Our pri-
mary goal was to test the stability of the Kolmogorov scali
regime against anisotropic perturbations, therefore we u
the fixed point of the three-dimensional isotropic model
the initial valueguz505(g3D* ,0,0,0) for the solution. Physi
cally, the initial valuesx i50 correspond to the assumed a
sence of anisotropy at small spatial scales. The independ
of the fixed pointg* of the choice of the initial valueguz50
was tested for selected points taken in the vicinity of
border of the region of stability, where the calculation of t
fixed point parameters was repeated for randomly cho
initial value.

We compared two methods to deal with the singularit
at j561 for d,3 in the integrals~A2!: the substitution
j5sinu with the subsequent use of Simpson’s rule, and
Chebyshev quadrature formula for the evaluation of integ
with the structurea(j)/A12j2, where a(j) is a regular
h.

k,
le

ed
s

ce

e

n

s

e
ls

function. According to our experience the application of t
Chebyshev method was more effective for the calculation
integrals~A2!. In the numerical integration the division t
128 subintervals was used.

It must be emphasized that during the numerical calcu
tion of the integrals, repeatedly applied on each step of
Runge-Kutta method, it was important to test simultaneou
the conditions

x̄1.21 , x̄2.21 , x̄3.2~A1111A112!
2.

~B1!

These were analytically derived from the requirement of c
vergence of the integrals~A2!. We found out that a wide
variety of unstable renormalization-group trajectories tend
violate the conditions~B1!. At the beginning the evolution o
trajectory starts as a long-lasting movement in the vicinity
the surfacex̄ 352(A11 x̄ 11A11 x̄ 2)

2. After this period a
quite rapid final expansion of the trajectories towar
uug(s)uu→` follows. Therefore the numerical test based
the criteria~B1! represents an important test of the stabil
of the fixed point.

All calculations were performed on a 15315 mesh in the
space of parametersa1 anda2. To determine the boundar
value of the space dimensiond, the bisection method wa
used with the accuracy of 0.005 in the evaluation ofd.
a
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