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Stability of Kolmogorov scaling in anisotropically forced turbulence
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Renormalization-group analysis of randomly stirred fluid with anisotropic distribution of random force is
carried out at one-loop order. The axial anisotropy is introduced by free parameters of external forcing in the
Navier-Stokes equation, but the anisotropy parameters are not assumed to be small. The region of stability of
the Kolmogorov scaling regime in the space of anisotropy parameters has been determined for several space
dimensionalities 2d=<3. The Kolmogorov constant and the amplitudes of longitudinal and transverse pro-
jection operators with respect to the preferred direction in the energy spectrum have been calculated in
situations where the competition between the anisotropy of the external forcing and the Navier-Stokes dynam-
ics may affect the stability of the Kolmogorov regime. Extension to more complex magnetohydrodynamic
systems is under investigatiof$1063-651X97)00501-1

PACS numbeis): 47.27—i, 52.65.Kj, 11.10.Hi

I. INTRODUCTION cutoff, shape, and size of boundary conditions, creates only a
rough basis for the satisfactory understanding of the full

Nonlinearity of the Navier-Stokes equation for high Rey- complexity of the turbulence. Therefore the advanced statis-
nolds numbers makes the theoretical description of develical hydrodynamics tries to give a more accurate answer to
oped turbulence very difficult. Since the 1970s there hahe question of the validity of the classical phenomenology,
been a significant growth of interest in the theoretical invesWhich ignores the effect of anisotropy inside the inertial sub-
tigation of statistical hydrodynamic models, where the pheScales. This question has been treated egiligf with the
nomenological statistics of an external random forcing havé@Ssumption that the anisotropy in the stochastic forcing is
been used for the modeling of very complex flow instabili- Small. In the present paper we have carried out a one-loop
ties. In the present paper the stochastic variant of the Naviefénormalization-group analysis of anisotropic stochastic tur-
Stokes equation and the magnetohydrodynarMHD) bulence wnhout this assumption, and .hc.>pe that our re.sults
equations are discussed in the case when the axial symmetp€d more light on the problem of validity of the classical
of external random forcing has been taken into account. ~Phenomenology. o _

The deviation of the statistical behavior of the fully de- ~Another important motivation of this work comes from
veloped turbulence from the isotropic statistics was conihe study of weakly anisotropic stochastic magnetohydrody-
firmed by a variety of experiments and computer simula-7@Mics[5]. The results show that even small anisotropy of
tions, and the role of spatially oriented fluctuations is athe forcing leads to a large-scale modification of viscous and
permanently discussed aspect of turbulence physics. resistive behavior, viz., to the asymptotical growth of large-

This deviation may be induced by the presence of specifi§cale Lorentzian terms. The dominant effective Lorentzian
initial or boundary conditions, interactions of fluctuating forces have been found to lead to the supression of the Kol-

fields with mean flow gradients, or external fields. In theMogorov scaling. In the present work a new approach is
context of measurement the anisotropy contributions coul@'oposed for the analysis of the stability of the critical re-
also be relevant for the experimental errors in determinatio§imes of the stochastic axisymmetric MHD.

of the turbulent energy dissipatidd]. The comprehensive
paper of Herring[2] devoted to theoretical study of aniso-
tropic splitting of kinetic energy spectra using direct interac-
tion approximation could be considered the starting point for
the development of this particular direction of research. Turbulent flow may be described by a random velocity

It is a widespread opinion that the local isotropy postulateig|q 5()2,0 (v andx ared-dimensional vectojswhose evo-

of Kolmogorov together with the assumption that developedtion is governed by the randomly forced Navier-Stokes
turbulence in the inertial range is independent of the viscouggyation

II. RENORMALIZATION OF THE STOCHASTIC
NAVIER-STOKES EQUATION

*Permanent address: Slovak Academy of SciencesicKpSlo- &tz;—f— IS(J ﬁ)zj— W2y —fA= F, V.o=V.-f=0 ,
vakia. (2.1
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where v is the kinematic viscosity an@ is the transverse N . o g =
projection operator, defined @=1-V2V®V (I is the ]_1;[1 vm,(Xj,1)) :f [d%][d%]P(v,v)
dXxd unit matrix). The explicit form of the anisotropic dis-

sipative termf” will be specified later. Following the tradi- N -

tion of stochastic models of turbulence, the randomness in X]l:[l Um,-(XJ 1), lsmj=d.

Eq. (2.1 is introduced by the large-scale random forcing

f(x,t) with Gaussian statistics defined by the averages 29

Following [7], we write the probability distribution of the

f3=0, (fi(Xy,t)fs(Xo,t2))=Dis(Xg—Xp,t;—t5). R L , _
() (10 1106 12)=Djs0a e, L~ t) velocity fieldv in the formP=normx ex S| with the action

Here, the two-point correlation matrix
ddE _ R S:f dd)-()ldtldd)-gzdtz
Djs(x,t)=5(t)f WDjs(k)exr[i k-X] (2.2

1 . - - - -
. X Evj(xlatl)Djs(Xl_xzatl_tz)vs(XZ1t2)
can be parametrize®,5] as
Djo(K) =0, A K2 1+ a; £2]P;o(K) + aoRio(K)} +f Ao (XD~ a0 —(v-V)o
(2.3
+ 1}'5)21;4— FA]()ZJ)} (26)

for d-dimensional anisotropic random force. The matrices
P and R of transverse projection operators in the Wave—N te that ind dent of th iliary |
number space are defined by the relations ote that a new Independent of theauxifiiary INCompress-

ible fieldg has been introduced in the transformation of the

R KiKs stochastic problenf2.1)—(2.4) into the functional form. By
Pis(K)=djs— K2 means of the renormalization-group method it is possible to
extract large-scale asymptotics of the correlation functions.
R K; Ks To this end, the field theor§2.6) must first be renormalized,
st(k)=(nj—§kﬁ)(ns 5k?>’ which is most conveniently carried out by multiplicative

renormalizatior6].

.. In order to obtain a multiplicatively renormalizable theory
_k-_n 24 [7] it is necessary to include in the action terms correspond-

&= k * 24 ing to all superficially divergent one-particle irreducible cor-

. relation functions of both fields andv. The analysis of the
In the expression&2.3) and(2.4) k denotes the wave vector divergences of the correlation functions shows that to have a
and the unit vecton yields the direction of the anisotropy multiplicatively renormalizable theory, we must take the an-
axis. In the definition(2.3) the most general parametrization isotropic dissipative term in the Navier-Stokes equat®n)
of the nonhelicalD ;5 tensor, which depends on the dimen- in the form
sionless free parametess and @, maintaining the property

of incompressibility, is used. The force correlation tensor fA= V[Xl(ﬁ.ﬁ)25+X2ﬁﬁ€2(ﬁ.5)
Djs must be positive definite, which leads to the following .
restrictions to the values of the parametesg=-—1, +xsPn(n-V)?(n-v)]. 2.7

a,=0. For nonzerax4, a, the forcing describes differences
in energy injection in the preferred direction and directionsHere, x1,x», and x3 are dimensionless parameters describ-
perpendicular to it with the subsequent generation of anisoing the relative impact of the different anisotropic structures
tropic structures in the large-scale eddies. Irrespective of then the viscous dissipation. Technically, these new param-
precise details of large-scale dynamics a successive isotreters are required to bring about the cancellation of the di-
pization of these structures towards the small scales can hargences in the diagrammatic expression of the correlation
expected. We emphasize that, in contrast with the previouiinctions (2.5). Physically, the expressiof2.7) for the an-
work [3,4], these parameters are not considered small in th&sotropic force term in the Navier-Stokes equat{@ril) may
present analysis. The paramet&rwith the wave-number be obtained on phenomenological grounds in the same fash-
dimension is a scale setting parameter characterizing the sizen as the viscous terms in the isotropic Navier-Stokes equa-
of the microeddy region, and, is a positive dimensionless tion, where they are presented as the divergence of the vis-
constant. The usual assumption of stochastic theories exhilsous stress tensof8]. Constructing the most general
iting the Kolmogorov scaling behavior is that the forcing is expression of the phenomenological viscous stress tensor in
localized near the origin in the wave-vector space, thereforéhe presence of a preferred direction and taking its diver-
the physical value of the parameteis e=2. gence we arrive at the expressi@7) for the anisotropic
Measurable quantities in the analysis of the developedolenoidal part of the dissipative term of the Navier-Stokes
turbulence are the correlation functions of velocity, whichequation. The coefficientg; are the dimensionless coeffi-
may be calculated by means of the functional integral cients of viscosity of the anisotropic part of the viscous stress
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tensor, and represent the orientational redistribution of the R . 0
momentum flux accompanied by energy dissipation. S =J d"x;dt;d"x.dt;

In the leading order in the expansion parameggrthe
contributions to the renormalization of the stochastic Navier-
Stokes equatiori2.1) with the anisotropic forcé” in the
form (2.7) are extracted, according to the standard rules of
the _minimal subtraqtion methd®], from th_e one—loop irr_e- +f ddfdt(g(f,t){—atﬁ—(ﬁ-ﬁ)ﬁ
ducible Feynman diagram, whose analytic expression is

X

E’Jj()—()l ,tl)Djs(il_iz t— 1) vs(X2,tp)

dop (= +1[Z,V%0 +Zox1(n- V)20 + Z3x,nV3(n-v)
F<2>|Z=f—df dtA (P, t) A, s(K—p,t e
X Vaay(K)V (K= P). (2.8 The renormalization constarfs (Z;~ 1/e at the leading or-

_ _ o _ der of the expansion ig,) may be constructed in such a way
These terms are singular in the limit-0 with the tensor that they give rise to terms which cancel the divergences

structures appearing in the integrals of the model11). It should be
. noted that renormalization gives rise to the renormalized ac-

O(K28,p/€), O((k-n)28,,/€), tion (2.11) for space dimensiond>2 only. At two dimen-
sions new divergences appear, which lead to the renormal-

O(k?n ny/e), O((k-n)2nany/e). ization of the term quadratic in the auxiliary field This

results in additional complications in the renormalization-
The elements of the perturbation expansion appearing in thgroup analysis of the model near two dimensifi@], there-
integral (2.8) are obtained from the quadratic part and thefore we restrict the present treatment to space dimensions

cubic termouu of the action(2.6). In the (K,t) representa- d>2.

. . In the leading order the renormalization constants are ex-
tion the propagatord, A, and the symmetrized vertex X . ;

. . tracted from the divergent part of the integfal8) according
may be written in the form

to the following prescription:
. 9, o . . Lo
A (k1) == P AZKE 72wy (£, T P (k) LR (K) = = vkZ8a(1=Z1) = w(K-N)28a(1-Z5)
— k2 — 7= p(K-1)2 -
FWo( £ TORg(R1, vk N Np(1—Z3) — v(k-n)“nynp(1—2,)

+regular terms. (2.12

A 5K, D)= 0D W3( &, T P op(K) + Wal &, T Rapl(K)},
P Wal&k:m0Pag i TR} Rather complicated explicit expressions for the renormaliza-

- - - tion constants can be found in Appendix A.
Vg (K) = 1{Pos(R)k,+ P, (K)Kg}, 2.9 PP
where Ill. STABILITY OF ANISOTROPIC
HYDRODYNAMIC THEORY
2
W= 1+Z1§ L —— Ty In the renormalization-group method the correlation func-

tions (2.5) are expressed in terms of scaling functions con-
taining effective variablegy(s)=(g, ,X1,X2,X3) Which are
functions of the rescaled wave numistr k/A. The depen-
dence on the scale of these effective variables is governed by

the system of differential equatiof1]

Wo= =l e AL [ 14yt (ag— ) (1— €2
2= 7| @2 [1+a;+(a—ay)(1-§9)]

“gopAe e d5,
s—— =B (G a,a;,d),
ds "%
W3:e_TA, W4:—Hz(e_TB—e_TA), dX_j_ _
SE_BXI(gla].YaZId)I Ogsgl (31)

A=1+x18, M=xp+xaé, B=A+(1-£)M. . . »
(2.10 with the initial conditions

In a multiplicatively renormalizable model the renormaliza- ﬁﬂszl):gz(gv JX1:X2,X3) - (3.2

tion leads to multiplication of the parameters of the model by

renormalization constan®. The correlation functions of the The large-scale limit of the statistical theory is described by
renormalized model are calculated with the use of the renorthe stable fixed points of the renormalization group deter-
malized action, which in the present model is of the form mined by
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FIG. 1. Borderlines in thed,,«,) plane of
the region of stability of the Kolmogorov scaling
regime are shown for several space dimensions
2<d=3. Despite the physical condition,>0,
to obtain a complete survey of the stability region
we have included also the region of negative
Ay,

1 S 2 Y o I A O A |

-0.01

-0.02

YA e

Us-0=0", By (9" ;a1,0,,d)=0, parameters the Kolmogorov scaling regime becomes un-
’ stable, with a region of stability shrinking when the dimen-
. sion of space is decreased.
lng(g yag,az,d)=0. 3.3 Various aspects of axisymmetrically driven turbulence

At the one-loop order of the minimal subtraction sche®ie
the B functions on the right-hand side of EJ8.1) may be
expressed in terms of the renormalization constants as o

By, =20,e(1-32y),

BX1=2Xj6(2j+l_Zl)! ]=11213

0.015

The explicit form of the complicate@, and Bx,- functions

obtained from one-loop diagrams is presented in Appendix
A.

The location and stability of the fixed points in tlge 0.010
space depend on the parametgysy,, and «,. The expres-
sions for theB functions contain integrals, which have to be
calculated numerically. Therefore only a numerical analysis
(see Appendix B of the renormalization-group flow§3.1) 0.005
may be used to clarify different aspects of the strong anisot-
ropy problem. The set of flow patterns determined by the
initial conditions(3.2) leading to a stable fixed poirfB8.3)
constitute the universality class of this fixed point.

Numerical investigation illustrated in Figs. 1-9 confirms 0000 0.8 0.6 .
the existence of a universal kinetic scaling regime corre- o
sponding to a stable fixed point of the renormalization group
for not too large values of the anisotropy parameteysind FIG. 2. Contour map of the fixed point values of the coupling

a,. The Kolmogorov spectral index of this fixed point re- constang* («;,a,) atd=3. The borderline of the stability region
mains fixed to a value independentdfsee Sec. Y. How- of the Kolmogorov scaling regime is also shown. Note the weak
ever, for large physically allowed values of the anisotropydependence af* on the parametes, in the stability region.
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FIG. 3. Contour maps of the fixed point values of the paramegtrsy3, andy3 of the effective viscosity tensofa) Contour map of
the fixed point values of} . Note the nearly linear behavior of the equal-value contourg;oin the stability region(b) Contour map of
the fixed point values of? . (c) Contour map of the fixed point values g . Note that the strongly curved equal-value contourg®fin
the stability region are qualitatively different from the straight-line contours of the parangtens;, and x5 .

were discussed earlier in the weak-anisotropy approximatiooording to our investigation of Eq(2.1) in the weak-
[3,4]. In the present work we analyze stability of the Kol- anisotropy limit, the presence of nonzexg parameter is
mogorov scaling against strong anisotropy and calculate thigrelevant for the stability of the theory dt=3, see Fig. 1, or
dependence of the Kolmogorov constant on the anisotropgventually see the relatiorid.15).

parameters. It is a key step of this formulation to assess the The turbulence is expected to be a universal phenomenon.
relevance of the terngsvn(n-V)2(n-v) in the effective an- However, the notion of universality must be clarified here,
isotropic viscosity tensor, which is absent in the weak-because all of the obtained fixed point values of the param-
anisotropy approximation of Rubinstein and Barf@h Ac-  etersg depend on the anisotropy parameters and «,.
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FIG. 4. Contour map of the Kolmogorov constaiy{( a4, ;).
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FIG. 6. Contour map of the function 18 ¢'**"( a; ,@,), which

Note that maximal changes @, caused by the anisotropy are of characterizes relative difference of the effective Kolmogorov con-
the order ofO(10™3).

Therefore the plausible notion of universality can be fully

stant of the anisotropic model and the Kolmogorov constant of the
isotropic model.

related only to such characteristics, which remain unexample of such a persistent variable is the spectral index
changed, if the external axial symmetry lowers the symmetry ¥]=2€/3, which determines the large-scale asymptotics of
of the turbulent system. In the case of the kinetic regime, afurbulent viscosity.
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0.000

FIG. 5. Contour map of the function 18 ¢/ (a; ,@,), which

Henceforth, we restrict ourselves to the presentation of
the main results of the renormalization-group analysis, which
are focused on the investigation of the Kolmogorov scaling
regime with an emphasis on thet-dimensional approach
(2<d=<3).

Calculations on the strongly anisotropic system have
shown that qualitative changes in anisotropically driven tur-
bulence can take place at dimensions between two and three.
For each fixed value of the dimension of spacéhere is a
region in the @4,a5) plane, in which the Kolmogorov scal-
ing regime is stable against anisotropic forcing in the sense
that there is an infrared-stable fixed point of the renormaliza-
tion group with the Kolmogorov spectral index independent
of d and the anisotropy parametets and «,. Outside the
stability region this fixed point is not infrared stable—
numerical analysis indicates that the system approaches a
strong-coupling regime there—and the Kolmogorov scaling
regime does not exist. The borderline of the region of stabil-
ity is shown in Fig. 1 for several values of the space dimen-
sionality. It should be noted that at three dimensions aniso-
tropic forcing destabilizes the Kolmogorov regime at rather
small values ofr,>0.0235. Figure 1 also illustrates the fact
that the Kolmogorov regime becomes unstable against any
anisotropy below a critical dimensidd]

317-7
d =\/—T:2.6846, (3.4)

C

characterizes relative difference of the longitudinal and transverse
effective Kolmogorov constants.

because the region of stability vanishes for physically al-
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FIG. 7. Distribution of fixed point values of parameters calculated for a regular square mesh in the parametric spaee ofThe
calculation has been carried out only for stable fixed parameters. Data projections of obtained[vaci®@ss g; (a1, @,), x7 (a1, a3),
x5 (aq,@5), x3(a1,a5)] onto two-dimensional subspace of the parametgf, f5) are shown in(a), onto subspace of the parameters
(X3 .x3) in (b), onto subspace of the parametexs (x3) in (c), onto subspace of the parametegd (x7) in (d), onto subspace of the
parametersd’ ,x3) in (e), and onto subspace of the parametes,§3) in (f).

U
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3.02 amplitudes of the longitudinal and transverse projection op-
erators in the radial energy spectrum has been investigated

ct numerically.

3.00 Taking into account the stationarity and translational in-
variance of the model, the correlation functions can be ex-
pressed in terms of relative coordinates. This implies that the

2.98 equal-time velocity pair correlation function is given by

2.96 v < d’k R (I ik (X —X

: (vj(X1,Dhom(Xp,t)) = WGjm(k)qulk'(Xl—Xz)]-

2.94 Here, the spatial Fourier transfor@ m(k) as a function of
renormalized variables

2.92 . .

Gjm(k)— VAT 2 (g(s) W (s), (4.

2.90 T 1T 7T 1T T 7T 1T T [ VT 7T ¢ T T rrer 15T T .

~0.80 -0.40 0.00 0.40 with
ay
oe sds dinZ,
FIG. 8. Plot of the effective transverse Kolmogorov constant V(s)=s*exg —2 | —1(9(s))|, V1= ZnA
C* as a function ofa, for different values ofx,. 1s 4.2

lowed values of the anisotropy parametess= —1, a,=0.
Figure 1 also shows that the region of stability of the Kol-
mogorov scaling regime in the parametric spacexof «,
decreases with the dimension of space.

satisfies the renormalization-group equation

Gin(k)=0.

0 J
A TP, ag JZ Priox, " aw
IV. EFFECTIVE KOLMOGORQOV CONSTANT
The leading-order approximation of the functibn,, can be
The basic parameter characterizing the inertial range erderived from the condition that at the lowest order of pertur-
ergy cascade is the Kolmogorov const@jt. Here we dis-  bative expansion the correlation functi@R® must coincide

cuss the anisotropic theory, where the effectVgis not ity the propagatoA-m(lz, 7=0) of Eq.(2.9), therefore
constant, but depends on the anisotropy parameterand '

a, [or g* through Eq. (3.1)]. The calculation of U;m(@(s))~a,(s)11
Ci(aq,ay) is carried out following the main steps of the )
isotropic theory[12]. However, it is not possible to obtain =0,(S)[Pjm(K)W1(£,0)

analytic results here, and the dependence panda, of the .
+ ij(k)W2(§k,0)]Xjﬂ§(s)

3.12
| Using the differential equatio(8.1) for the variableg,(s) it
¢ can be shown that
3.08
9,(s)| 2e
f—n(T))——l ( +-Ins. (4.3
3.04
Thus from Eqs(4.2) and (4.3 it follows that
3.00
9 2/3
\P(s)=526’3(_—v ) . (4.9
2.96 gu(s)
Substitution of Eq(4.4) into Eq. (4.1) yields the expression
2.92
.1 _ _
Gin(K) =5 1719, 17%09,(8) J¥H3 4+ BA I, (g(s)).
28%0’8‘0“““‘_‘0‘46““Illd(l)o O4I_O (4.5)
(841

The perturbatively exactly calculated universal large-scale
FIG. 9. Plot of the effective longitudinal Kolmogorov constant asymptoticsk?~974¢"% in Eq. (4.5 can be considered the
cl as a function ofe, for different values ofx,. main result of the renormalization-group analysis.
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Next we establish a relation between the mean dissipatioivith the help of Eq(2.3) and subsequent analytical integra-
rate of energy and the parameters, andv. Comparing the tion the following explicit form of the mean rate of energy
Schwinger equatiof6S/Sv;)=0 with Eq. (2.1) yields the dissipation is derived:

relation
— ,Sqd=1) A1 ay+ a, 2792
o g0 [ qesx . - eTOY B02mT 42 d |0 TR
0= [ 4% [ T D (X t-t) (2m)” 4-2e o
+D|j(>21—>2,t1—t)], (4.9  Wwherel'(x) is the gamma function. Using E(1.11) we can

express »?> as a function of the product
. - . = 2132135 —8/3r 4 __ 2/3 H it
which couples the auxiliary field and the random force &~ 9, ~ A~ (4—2€)"and substitute itin E4.5). In the
field by means of the correlation matrix of the random large-scale limit we obtain

force Dj;. Using Egs.(2.2) and (4.6) and the symmetry R €\ 23
propertyD; =D,;, we obtain the correlation function Gh (k) 2?’36ak2d4f’3/\(4’3>(52)< 1- E)
FRD-5 i, [ 9% 5 & cosli. (-3 X (263 ) "I (g") (412
<f(x,t)-v(x,t)>:fd le ijl(k)COS[k-(x—xﬁ] v Jmis ‘
R . with
X (v (X, 1)) (Xq,t)). 4,

(i (X, T (X1.1) @.7) 22 s

To derive an analytic formula for the correlation function Ca™ Sy(d—1)(d+a;+ay))

(f-v), we employ the connectiof.7) and the exact form of

the equal-time response functign;v,). Each term of the where the notatiorG?ng*)(IZ) means thaGR and the func-
perturbative expansion of the response functiontions(2.10 are taken at the fixed point corresponding to the
(vj(X,)T,(X1,1)) contains continuous chains of retarded Kolmogorov scaling regime. In the framework of the
A(k,t) propagators. In the equal-time response function thé-€xpansion method the coefficient of the powerlike wave-
step functionsd(t) in Z(k,t) form closed loops which pro- number dependence (11; the velocity correlation function is
duce vanishing time integrals, apart from the case of a singigalculated up to th&(e ") order, and the Kolmogorov val-

; . ues of the exponents 4{ 2)/3 and 2-d—4¢€/3 can be ob-
A(k.t) propagatof 7]. The resulting expression tained by choosing for the expansion parameter the value

dik €=2. Thus we obtain from Eq4.12 the expression
0i(X, DT 4(Xq, 1)) = f —— A, (K,0)exiK - (X—X;) .

<' L= | amt ! V! G (K) =2k 2 Mjn(g*),  Ca=(20%) "%,

contains only the remaining zeroth-order contribution. Usingy order to better understand the possible measurable conse-

Eg. (2.9 we obtain quences of the presence of anisotropy, we define the radial
spectral tensor as

- - 1 d%k . L.
<v,~(x,t)va(x1,t)>=§f Waj(k)exmk-(x—xl)],

1 N
. - d-1 _~R(*)
9 Eim(k)= 5572k fkoG,m (K). (413
where the conventiod(0)=1/2 has been used. Here, dQ; denotes the measure of integration over the

When Eq.(4.8) is combined with Eq(4.7) the correlation

. = \ herical surf f radiy& K=0.
function of random force and velocity field acquires the formSp erical surface of radiuk| centered ak=0

Instead of the Kolmogorov constaft, of isotropic tur-
1 49k bulence, we introduce two independent scalar amplitudes
<F()Z't).,j()2,t)>:_fk 2’5”“2), (4.9  CjandC,, which decomposg;, to longitudinal and trans-
<A

2 21) verse parts with respect to the preferred direction,

where we have introduced the cutoff parameteexplicitly.
Averaging the scalar product of E.1) and v, and taking

into account that the term&t<5~5>, (J-[(JV)J]) vanish ) ) ]
due to stationarity and translational invariance we arrive at/Sing the expressiong.13 and(4.14 with the subsequent
the energy balance condition extraction of the projection operators we obtain

Ejm(K) =%[cL Pim(M)+CyPl (M TeZ% %3 (4.14

s=(frocD- v ) =(fxH-v(xt), 410 ¢= cbfldg(l— £2)( 4V wE (£,0)+(1— E)WE (£0)],
0

wheree is the mean rate of energy dissipation. From Egs.
(4.9 and(4.10 we have cp, (1 -
Cl:_d—lfo d§(1_§2)(d 3)/2

1 dik ~ c
S_EJKsA 2w)aDU( ) X[(d—2+ )W} (£,0+EX(1- w3 (£,0)],
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It turns out that the effect of induced anisotropy is hardly
visible in the calculated value of the parame@r. How-

Substituting Eq(2.10 in the preceding expressions we ob- ever, our predictions of the variations of* and spectral

tain
1
CHZCbL dé(1- 39D g),
1 1+ 2
CL:CbJO d§(1—§2)(d_3)/2((d—Z)#“gé;ﬁfZ/C(g) ,

with the function
l+ (1’2+(Cll_ az)fz
1+x5+ (X3 — x5 +x3)E— x5 &Y

Comparison of the trace of the matii&.14 with the defini-
tion of the isotropic Kolmogorov constant

K(é)=

E“ (k) = Ck;Z/EBI(_S/3
yields

(d—l)CJ_'f'C”
T

The Kolmogorov constan€, and the parameter€, and

“splitting” shown in Figs. 8 and 9, which are of the order of
about a few percent allow us to speculate about experimental
verification of these results. The analysis has revealed that
the radial energy spectrum including the information about
the statistics of velocity modes is not sensitive to the pres-
ence of anisotropy. It can be seen from Fig&)#7(f) that

the effect of anisotropy is more pronounced in the variations
of the fixed point values of the parameters

—0.11<x7<0.1, —-0.04&x5<0.31, —0.7<yx3<0,

which describe the effective anisotropic viscosity.

V. ANISOTROPIC RESISTIVE
AND LORENTZIAN FORCES
IN STOCHASTIC MAGNETOHYDRODYNAMICS

There are several mechanisms through which the MHD
turbulent media become anisotropic. The anisotropy can
arise in the presence of a uniform background magnetic field
[13], macroscopic polarization of the turbulent media, or an-
isotropy induced by specific random forcin§]. The last
example deals with the problem of how the anisotropic forc-
ing determines the inertial properties of the MHD.

C| may be determined using the fixed point parameters of the The initial object of our treatment—stochastic anisotropic

renormalization group calculated numerically.

We define the relative measures* and '°" character-
izing deviation of the system from the isotropic state as
Ck_ C:(SOU
=,

CIkSO r

cl-c*
C

isotr__

O'HI = 0'

WhereCikS"tr is the Kolmogorov constant in the isotropic sto-

chastic mode[12].

Let us consider the most important cade 3, which is
well illustrated in Figs. 2—-9. Fai=3 the Kolmogorov con-
stant of isotropic syster@; "= (80/3)"°=2.9876[12]. Ana-

hydrodynamics—is used to construct a renormalizable
theory of randomly driven anisotropic magnetohydrodynam-
ics. The equations of the anisotropically driven MHD fluid
[5] (under the conditions of very high Reynolds numbers and
magnetic Reynolds numbermay be written as

g +P[(v-V)o+(b-V)b]— »V25 — A+ =T,

V)5 upi2h o=

O

b+ (v-V)b—(

V.u=V.b=V.f=V. {*=0,

lyzing available data we have found that the values of thgyhereu is the dimensionless inverse magnetic Prandtl num-

parametersy,, «, fall into the region of stability of Kolmog-
orov scaling if they satisfy the inequalities

0<a,<0.017 68-0.029 12v,
—0.023 832+ 0.032 843,

—0.906< ;< 0.5486. (4.15

We have also found that in the stability region the anisotropy
measuresrt, ¢/*°" are subject to the following limitations

(Figs. 5-6:
—1.7x10 2< ¢l <5.04x 1072,

—6.2<10 3< ¢’sr< 2 4x 1073,

For the numerical values df, and related parameters we

find (Figs. 4—6, 8, and Bthat
2.97
2.925.C+<3.003.

<Cy<2.995, 2.95%Cl<3.082,

ber. The correlations of the magnetic forcing satisfy the

usual assumption of uncorrelatéd andf forces. The statis-
tics of the magnetic random force is assumed to be Gaussian
with the correlation functionfs]

(F2(x1,t1)Fo(X2,12)) =0,

<fjb()_()l ) F(Xa, 1)) = Djbs()zl_ X,t1— o).

The correlation functioﬂDf’s is defined by the relation&.2)

and (2.3 and the following reparametrizatiog,— g,
a—ag, ar,—ay,, €—€' . Here,az, a4, and the exponent

€' are additional free parameters agglis a new coupling
parameter. The anisotropy of the magnetic forcing requires
appropriate additional terms with lower symmetry to be
added to the model, which are absent in the standard MHD
equations. The anisotropic magnetodissipative term analo-
gous to(2.7) is

fB=up[ x4(n- V)2b+ xsPAV2(n-b) + xePR(n-V)4(n-b)],



55 STABILITY OF KOLMOGOROV SCALING IN ... 391

where x;,j=4,5,6 are new dimensionless parameters. Allthe anisotropy limits have been established in which they
the terms, which are generated in the process of renormalizaive rise to the Kolmogorov scaling regime, for spatial di-
tion, must be included in the definition of the modified mensionsd,<d<3. Relevance of a previously neglected
Lorentzian force in order to obtain a multiplicatively renor- term of the effective anisotropic viscous force has been dis-
malizable model. The additional terms can be written in thecussed. An anisotropically driven MHD theory with similar

form strong-anisotropy terms has been put forward.
fb=P[X4B(n-V)(n-b) +A,n(n- V)b2+A5n(b- V)(n-b) ACKNOWLEDGMENTS
+A4n(n-b)(n-V)(n-b)] M. H. gratefully acknowledges the hospitality of the De-

partment of Physics of the University of Helsinki, Finland.
regarded as a modification of the isotropic Lorentzian termrhis work was supported in part by Slovak Academy of
[b-V]b. Sciences Grant No. 2/550/96 and by the Academy of Fin-
Recently, a renormalizable variant of the MHD theory land.

with simpler termsf}, _ o, fﬁA|X3HO, FB|XGAO has been stud-
ied in detail[5]. This treatment was limited by the assump- APPENDIX A: CALCULATION OF = 8 FUNCTIONS

tion that the anisotropy parametets,|=1,2,3,4 and conse- |y order to reduce as much as possible the number of
quently the fixed point valueg{ ,j=1,2,4,50} ,i=1,2,3  terms arising from the integr42.8) in the various computa-
were small. It was shown that the investigation of MHD in tional stages, a few auxiliary identities and relations have
the weak anisotropy limit leads to Kolmogorov's spectralpeen established. It is necessary to specify the form in which
prediction(for the kinetic and the magnetic energy specifra  the functionsws(&c_p, Ti—p), Wa(ék—p,7k—p) and also the

the forcing exponents satisfy the physically unacceptable i”()peratorsP(IZ— 5) and R(IZ— B) will be expanded in the

equality €’ <0.6%. The results obtained in the hydrody- Tavl L of t | ¢ fth
namic theory with strong anisotropy allow us to speculate aylor series in powers ) [e'x erna l/vave.vec or ot the
about the consequences for the stability of the MHD. integral(2.8)]. The proportionalityV,,,(k) ~k is the reason,
We believe that the presence of thgmagnetodissipative WhY in the final extraction of quadratic terms frai2.8) the
term, analogous to the previously discussed visgguerm,  Taylor expansion of the produdt, s(K—p,t)V s,5(k—p) is

will have immediate implications for the large-scale effect ofneeded up to the first-order lﬁonly. Let us define the co-

the anisotropid® term and therefore will play an important efficients W; iy, 1=0,1,2,3(they depend on the scalar pa-
role in the stabilization(eventually destabilizationof the  rameter¢,,) as the first-order derivatives at vanishing scalar
critical regimes in the MHD. productsk-n andk- p,
VI. CONCLUSION W(j 0= Wil k- nik- p—0) »
In this paper a renormalization-group analysis of aniso- IW:
tropically driven hydrodynamic turbulence has been carried W(j,1)=pa—£ (K-1:K-p—0) »
out at the leading nontrivial one-loop order of the perturba- a(k-n)
tion theory. The problem of the existence and stability of the
Kolmogorov scaling regime has been investigated through 5 oW
numerical solution of the equations for the fixed point of the Wia=p a(K-p) | ki)

renormalization group. The principal conclusion from the re-

sults is that the Kolmogorov scaling regime can become unThen the expansion ofi3,w, is
stable due to relatively small anisotropy variations; the less
the space dimensionality, the more pronounced this property
becomes. In particular, it has been confirmed that there is a wj =W o)+ W 1 T
critical dimensiond.=(3\/17—7)/2=2.6846, below which

the Kolmogorov scaling regime does not exist in the presfor j=3, 4. Using the relation$2.9) we obtain the coeffi-
ence of anisotropic forcing. For the parameters describingients

>

K-n

k-p
+W(j‘2)(32—) (Al)

Wiz p=2Wi3oméxs, Wiea=21(A—Ex)e 7,

—A7—Br7
_2e _ p!’AAT 1 ABT 1 AT _ 1 AAT AT _ BT
W(A'l)_—(A—B)Z( B'eMé+B'e® " ME+AB' @ M7E—BB e "M 7é+ e Méxi—e°"™Méx,
— A M 7Ex 1+ BEP M 7éx — AN Ex s+ B Ex s+ AP TEx 3 — BePTExs),
Ze—AT—B’T

Wi 2= 7 (AB&"M 17— B% "M 7-A%®"M7+AB'M7+B'e "M ¢~ B'e®"ME*~ AB e "M 7¢2

(A—B
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+BB'eMMrE2—e M Py, + %M Py + AP M TPy~ BEP M 78y + AN E x 3~ BEME 3~ Ae®TE 5
+Be"Exs),
where

B

B'= @ =ximxztxa( 1~ &).

For the operator® andR as functions of the wave vectﬁr—ﬁ we find the expansion rules
Pis(k=p)=Pjs(p) =2 p~*(k-p)p;ps+ P~ 2(Kepj +K;Ps),
Ris(K=P)=Rjs(P)+(nj= P~ *&P)[P *épkst P~ *kékps— 2P~ *ép(k-P)Ps]
+(Ng=p &P P HEpki + P 2kéD; — 2P 2, (K- p)p;].

In the following we present a procedure which considerably reduces the computational effort and replaces the integration
with the measureldﬁ by single integral over the variabl The final step of the procedure—the one-dimensional integration

over {&—must be realized numerically. Let us denoteHdy) an arbitrary function of the argumeﬁt ﬁ/p. The following rules
for the extraction of the ¥ poles in the minimal subtraction procedyss:

dp _  pipiPsPm 1
2m)0 F(&p) pirarze :Z[I(4,l){|:}ninjnsnm+|(4,2){F}(ninj55m+ NiNg&jm+ NiNyWJjs+ NjNSim+ NNy Sis+ NN i)

+143{F}(8ij OsmT SisSjm+ SimIs) 1,

d’p pipjps 1
2y F(fp)p3+d+ze :Z[I(S,l){F}ninjns+ I3 21F}(Nidjs+Njdis+nsdij) ],

d’p . Pipj 1
2m)° F(‘fp}p2+d+25 :Z[I(z,l){F}ninj'i'|(2,2){F}5ij]'

dp pi 1 dp 1 1
J (27T)dF(fp)pl+d+25zznil(l,l){FL J(zw)d':(gp)pd+2£=z|0{|:}

are appropriate for the separation of the divergent part from the one-loop Feynman iRegyradere,| x v){F} are linear in
F functionals connected with the basic functional

S, 1
lo{F}=1i00{F) =5y | dé(1=8) 42 (9 (A2)

by means of the relations
| a.p{F}=(dadal o{FE* =60l o FEXH+3I6{F1(d?—1) 7Y, 14 {F}=(—dal o{FEY}+d3l o{FEH —1o{F})(d?—1) "1,
laa{F}=(1o{F &} —21o{FE +1o{FEN(d*—1) 7", 15{F}=(Io{F&}d,—3Io{F &) (d—1) 74,
laa{Fh=(—1o{FE}F16{FENA=1)7"  10{Fh=(Io{FEd—Io{Fh)(d—1)"%,
l2tFt=(o{F}=1o{FEN(d-1) " 11 y{F}=1o{F&,
where we have used the notation
dj=d+j, j=234.

In order to keep the number of terms in the renormalization consfamtthe renormalized actiof2.10 as small as possible,
it is useful to define the fOIIOWingala2b1b2c1c2 tensor structure:

g ]
Jala2b1b201c2:4_:|(al,a2)[ gblfiwdfwbz(fyT)W(cl,cz)(ga 7') . (A3)



55 STABILITY OF KOLMOGOROV SCALING IN ... 393

The expressiongAl) and (A3) may be used to bring the coefficierds, . . . ,Z, into the compact form
Z1—1=—J3222140~ J222240" J224240~ 23430130~ J430132T 4432140 Ja321471 2432230 Ja322321 24322401 J432242
— 43434240~ Ja3a242
Zy—1=—J221141 J2212317 J221241~ 23222240 J223241~ I320131~ 3321140~ I321142 2J321230~ 321232~ J321240
—J3212421 3221411 I3222311 3222411 53232401 I323242~ I324241~ 23420130~ Ja20132F 4J422140T Jaz2142
+ 234222301 Ja22232T 234222401 Ja22247~ 43424240~ 424242,
Z3—1=J112140" J1122407 114240~ J212140 2122401 J214240~ J222240~ 3J321140~ I321142~ 2321230~ J321232
— 23321240~ J3212421 533232401 J323247~ 23420130~ Ja201321 44221401 Ja22142F 24222301 Ja222321 2422240
+ 34222407 4424240~ 424242,
Z4—1=—Jooo240t J111141F J111231F J111241F 5112240~ J113241F 22101401 J2101421 22102301 J2102321 J210240
+32102477 23211141 23211231~ 23211241~ 100212240~ J2122427 23213241~ I310131 633111407 2311142
—4J311230~ 2d3112327 33311240~ 2J311242F 3121411 J312231T I31224 1T 1003132401 23313242~ I314241 2410130

—Ja10132 Aa12140t Ja12142F 24122301 Ja12235T 24122401 Ja12242= 43414240~ Ja14242-

APPENDIX B: NUMERICAL METHODS USED function. According to our experience the application of the
IN THE SOLUTION OF DIFFERENTIAL EQUATIONS Chebyshev method was more effective for the calculation of
OF THE RENORMALIZATION GROUP integrals (A2). In the numerical integration the division to

128 subintervals was used.

It must be emphasized that during the numerical calcula-
tion of the integrals, repeatedly applied on each step of the
Pf?unge-Kutta method, it was important to test simultaneously
the conditions

The system of differential equatiort3.1) was solved nu-
merically, using the fourth-order Runge-Kutta method with
the adaptive choice of the integration step. For the variabl
z= —Insthe first step valu&z=0.001 was chosen. The step
Az was considered satisfactory, if the relative error of two
consequent approximations d|d not exceed °L0Our pri-_ o> -1, x>-1, E>—(\/1_+1+ \/1—+2)2_
mary goal was to test the stability of the Kolmogorov scaling (B1)
regime against anisotropic perturbations, therefore we used
the fixed point of the three-dimensional isotropic model asThese were analytically derived from the requirement of con-
the initial valueg|,-o=(93p,0,0,0) for the solution. Physi- vergence of the integraléA2). We found out that a wide
cally, the initial valuesy;=0 correspond to the assumed ab- variety of unstable renormalization-group trajectories tend to
sence of anisotropy at small spatial scales. The independengi®late the conditiongB1). At the beginning the evolution of
of the fixed pointg* of the choice of the initial valug|,—,  trajectory starts as a long-lasting movement in the vicinity of
was tested for selected points taken in the vicinity of thethe surfacéyz=—(\1+ x1+ 1+ x)2. After this period a
border of the region of stability, where the calculation of thequite rapid final expansion of the trajectories towards
fixed point parameters was repeated for randomly chosefig(s)||— = follows. Therefore the numerical test based on

initial value. the criteria(B1) represents an important test of the stability
We compared two methods to deal with the singularitiesof the fixed point.
at ¢é==1 for d<3 in the integrals(A2): the substitution All calculations were performed on a X85 mesh in the

&=sind with the subsequent use of Simpson'’s rule, and thespace of parameters; and a,. To determine the boundary
Chebyshev quadrature formula for the evaluation of integralyalue of the space dimensiah the bisection method was
with the structurea(£)/1— &2, where a(¢) is a regular  used with the accuracy of 0.005 in the evaluatiordof
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